Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem
نویسنده
چکیده
M-convex functions, introduced by Murota (1996, 1998), enjoy various desirable properties as “discrete convex functions.” In this paper, we propose two new polynomial-time scaling algorithms for the minimization of an M-convex function. Both algorithms apply a scaling technique to a greedy algorithm for M-convex function minimization, and run as fast as the previous minimization algorithms. We also specialize our scaling algorithms for the resource allocation problem which is a special case of M-convex function minimization.
منابع مشابه
A New Fairness Index and Novel Approach for QoS-Aware Resource Allocation in LTE Networks Based on Utility Functions
Resource allocation techniques have recently appeared as a widely recognized feature in LTE networks. Most of existing approaches in resource allocation focus on maximizing network’s utility functions. The great potential of utility function in improving resource allocation and enhancing fairness and mean opinion score (MOS) indexes has attracted large efforts over the last few years. In this p...
متن کاملAsymptotic Close to Optimal Resource Allocation in Centralized Multi-band Wireless Networks
This paper concerns sub-channel allocation in multi-user wireless networks with a view to increasing the network throughput. It is assumed there are some sub-channels to be equally divided among active links, such that the total sum rate increases, where it is assumed each link is subject to a maximum transmit power constraint. This problem is found to be a non-convex optimization problem and i...
متن کاملDecentralized Routing and Power Allocation in FDMA Wireless Networks based on H∞ Fuzzy Control Strategy
Simultaneous routing and resource allocation has been considered in wireless networks for its performance improvement. In this paper we propose a cross-layer optimization framework for worst-case queue length minimization in some type of FDMA based wireless networks, in which the the data routing and the power allocation problem are jointly optimized with Fuzzy distributed H∞ control strategy ....
متن کاملScaling Algorithms for M - convex Function Minimization
M-convex functions have various desirable properties as convexity in discrete optimization. We can find a global minimum of an M-convex function by a greedy algorithm, i.e., so-called descent algorithms work for the minimization. In this paper, we apply a scaling technique to a greedy algorithm and propose an efficient algorithm for the minimization of an M-convex function. Computational result...
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 134 شماره
صفحات -
تاریخ انتشار 2004